
6 talks on Cocoon

Random notes to test the view
Lorem ipsum

http://www.gapingvoid.com/

My name’s Andrew, it’s a pleasure to be here.

http://www.gapingvoid.com/

It’s also a pleasure to see so many familiar faces, friends old and new.
Time is short, so I’ll get straight into it.

“stick a little aussie flag in your presentation mate
and tell everyone i wish i was there! :-)”

-- Marcus Crafter

Oh, just before I start ...

SIX?!?

When I submitted all 6 talks, I never thought for a moment they would
all be chosen. I’m not sure the Cocoon community would be too happy
about attending the Andrew GetTogether.
Thankfully the people on the mailing lists agreed, and so we’ve saved
some for articles hacked at the hackathon.

-3
50%
OFF

So I’m going to drop three of the talks, I hope you don’t mind. There’s
only 30 minutes after all. Or, to put it another way, a one time special
offer, I’m giving you 50% off. For free. How nice am I?

6 talks on Cocoon
3

So, without further ado, I proudly present “3 talks on Cocoon”.

• Things your mother never told you about Cocoon

• 10 reasons to use Cocoon

• An illustrated guide to Cocoon technologies

The talks I chose were these, which seemed to be the most popular.

aggregate

But hang on a minute! This is Cocoon we’re talking about here! Why
don’t we use aggregation, and combine all these talks into one
pipeline? Brilliant! Genius!
So, I’m happy to present

10 things your
mother never told

you about
reasons to use

Cocoon technologies

(illustrated)

(rush) 10 things your mother never told you about how to use Cocoon
technologies
(BREATH)
illustrated
Time is short, let’s get going.
Did I really just use 5 minutes for the introduction? I could have fitted
another talk in there! Anyway...

10

Separation of Concerns

If you’re new to Cocoon, this is where it all begins: Cocoon is built to
help you enforce separation of concerns.

Management

ContentLogic Style

Separation of concerns can be illustrated by the Pyramid of Contracts -
4 major concerns with 5 contracts between them.

After all these years, still nothing keeps these separate like a _good_
cocoon application. Word of warning: it’s too easy to mix them, at
which point Cocoon’s no better than any other badly-used tool.

9

http://redhanded.hobix.com/bits/campingAMicroframework.html

The Ruby on Rails folk talk about XML sit-ups.
You may remember me going on about it last year too.

Which do you prefer?

builder = Builder::XmlMarkup.new(:target=>STDOUT,:indent=>2)
builder.person {|b| b.name(”Jim”); b.phone(”555-1234”)}

<?xml version=”1.0”?>
<person>
 <name>Jim</name>
 <phone>555-1234</phone>
</person>

What would you rather do?
Which is better: writing XML in Ruby (or any other scripting language)
or just writing the XML?
Call me old-fashioned, but whatever happened to “the right tool for
the job”?

Writing XML in anything other than XML reminds me of something ...

<XML Everywhere/>

When you’re working with XML data, pick the right tool for the job.

It’s a STRENGTH not a WEAKNESS! Embrace the XML side.

8

Components

No matter what your application, being able to plug any of the
hundreds of pre-written Cocoon components together to build a
comprehensive solution is one of THE major advantages of Cocoon. I
quote: “I wrote a CRUD application for an LDAP addressbook in one
day!”.
Why is this possible? Because most of the people working with Cocoon
have already encountered the same problems you’re having; the code
is there, tried and tested and ready to use. Cocoon doesn’t have to be
about doing the heavy lifting; it can be about pulling together the right
building blocks with some XML configuration glue to create all manner
of applications.

7

The sitemap

If you’re new to Cocoon, the sitemap is the switchboard.
It connects up the parts of your application.
If you’re an old hand at Cocoon, revisit your sitemaps and see if there
isn’t a way you can improve them: it’s surprising the features that are
in there that rarely get used.
Keep them simple -
Here’s two examples:

<map:match pattern="books/*">

</map:match>

Key: 1
Value: Cocoon

<map:generate src="{1}.xml"/>
 ...
<map:serialize/>

Cocoon.xml

<map:match pattern="products/*/*">

</map:match>

Key: 1
Value: books

Key: 2
Value: Cocoon

<map:match pattern="**/Cocoon">

</map:match>

<map:generate src="{../1}/Cocoon.xml"/>

<map:transform src="{1}/stylesheet.xsl"/>

<map:serialize/>

products/books/stylesheet.xsl

Key: 1
Value: products/books

books/Cocoon.xml

<map:match pattern="products/*/*" name="outer">

</map:match>

Key: 1
Value: books

Key: 2
Value: Cocoon

<map:match pattern="**/Cocoon" name="inner">

</map:match>

<map:generate src="{#outer:1}/Cocoon.xml"/>
<map:transform
 src="{#inner:1}/stylesheet.xsl"/>

<map:serialize/>

Key: 1
Value:
 products/books

genius!

also genius!

6

Forms

Automatic validation; complex things such as repeaters; ”just works”

<fd:selection-list
 from-service=”userService”
 from-method=”listUsers”/>

<fd:selection-list from-service=”userService” from-
method=”listUsers”/>

Set of components for cforms, configured to work directly with spring/
orm layer, bypassing flow:
<fd:selection-list from-service=”userService” from-
method=”listUsers”/>
speeds up development of large sites, keeps structure and
dependencies cleaner

5

Diversity

Cocoon used in so many different places for so many different
purposes. From mobile phone networks to banks, universities to
media, it’s as broad as it is big.
Who can forget music in Cocoon, Midi?

What other developer community gives you this?

4

(Java)Flow(Script)

Whether you want rapid prototyping or to take advantage of
continuations, flow is the answer.
<fd:selection-list from-service=”userService” from-
method=”listUsers”/>
speeds up development of large sites, keeps structure and
dependencies cleaner

3

how many of you are familiar with the net neutrality bill? Perhaps you
caught Senator Ted Stevens (Republican, Alaska) explaining why he
voted against it, with an explanation of how the internet works.

The Internet is not something you just dump something on it’s a
series of tubes.

The poor guy got slated for this, but what most people don’t know is
he’s actually a Cocoon developer in his spare time. He was a bit
confused about terminology; what he referred to as tubes we call ...

Pipelines

Everything a pipeline:

even sitemaps
even transformations

cocoon://

Split a complex problem into smaller re-usable bits.

2

Developers
(developers developers developers)

1

The community

The End

Well, time went by a little quicker than I’d expected....

Actions

Awful

AJAX

Amsterdam

A is for ...
Actions. But it’s no coincidence A is also for Awful. Use flow instead.
A is also for AJAX, an awesomely accessible addition.
A of course is also for Amsterdam.
Ok, you get the idea. Let’s see if you’re still awake after lunch, and
how much you know about Cocoon

Blocks

Blocks, the division of Cocoon into more specific components.
Pluggable, wireable, reloadable at runtime in Cocoon 3.

...?

C. What begins with... ? I really struggled with this one. Sorry.

cms

ehcache

Flow

Forms

Generators

Look! Look! It’s a hippo! What a bit of luck!

i18n

Integration

JavaFlow

Kont

I’ll help you out with this one.

K is for ‘kont’... a german abbreviation of “continuation”.
Unfortunately, it’s also dutch for “arse”.
Moral of the story: be careful with your URLs.

http://www.importantsite.com/foo/12345678.kont

K is for ‘kont’... a german abbreviation of “continuation”.
Unfortunately, it’s also dutch for “arse”.
Moral of the story: be careful with your URLs.

<map:match pattern="*.kont">

<form action="${continuation.id}.kont" method="POST">

<map:match
	 type="request-parameter"
	 pattern="continuation-id">
	 <map:call continuation="{1}"/>
</map:match>

<ft:form-template action="" method="POST">
<ft:continuation-id/>

l10n

Multichannel

Mavenisation

naming

Object-relational

... is for “Oh my goodness is he really going to read out the whole
alphabet?”

Portals

... is for Perform.

Querybean

repository
readers

Sitemaps

Serializers

Transformers

util

<Verbose></Verbose>

Web 2.0

Why aren’t you
using Cocoon?

<?xml version=”1.0”?>

you.

Zeitgeist

Zeitgeist –noun, German.
the spirit of the time; general trend of thought or feeling

characteristic of a particular period of time.

grep "^Subject: " * | sort | uniq -c | grep -v " [1-9] " | sort -nr

Calculated using advanced heuristics, natural language processing,
lexical patterns, dice coefficient, latent semantic analysis

a hacked together shell script (yes I was hacking on *something* at
the hackathon)

Do you remember ?

Partly a trip down memory lane, partly a look at the history of the last
year to seriously identify common themes, problems and successes.

September 2005

• Shall we switch to Jira?

• GUI installer

• Arjé as committer

• Releasing 2.1.8

Here’s a look at the most popular themes of September

The buzz back in September surrounded Jira, a GUI, Arjé and 2.1.8

October 2005

• Is Cocoon obsolete?

• Fixing old bugs

• Shall we switch to Jira?

• Roadmap for Cocoon Blocks

• Releasing 2.1.8

In October, the anti-buzz was on obsolescence, old bugs, Jira, blocks,
and 2.1.8

November 2005

• Planning 2.2

• ForrestBot build failed

• A new Cocoon logo

• Releasing 2.1.8

• M10N

In November, we looked to 2.2, ForrestBot was complaining, we talked
about logos, and 2.1.8
Oh, and M10N started entering the charts ...

December 2005

• Planning Cocoon 3.0

• The next shiny thing

• Cocoon 2.2 with Maven2

• AJAX roadmap

• ForrestBot build failed

In December, flush with our victory of 2.1.8, we started talking about
Cocoon 3, shiny things, Maven, and AJAX. ForrestBot would not shut
up.

January 2006

• Block deployment, a user’s p.o.v.

• ForrestBot build failed

• Release 2.1.9

• M10N

Blocks, would someone have a quiet word with ForrestBot, 2.1.9,
M10N

February 2006

• Using trunk

• Using spring

• Release 2.1.9

• Logkit

• ForrestBot build failed

February was user month, with talk about using trunk and spring.
2.1.9. Logkit. ForrestBot.

March 2006

• A simple release plan

• Release 2.1.9

• OSGI blocks

• Simone Gianni as committer

March saw us come up with a cunning release plan, and talk about
2.1.9
OSGI got popular, so did Simone.
... and just 6 short months later, he gives us blueprint!

April 2006

• Release 2.1.9 (again, again!)

• Gump failed

• Gump failed

• Gump failed

• Gump failed

• What’s going on with Gump?

2.1.9 for third month running.
Gump got jealous of ForrestBot’s success.

May 2006

• Simplifying setup

• ForrestBot build failed

• 2.2 configuration issues

• Apachecon Hackathon: 2.2?

• Releasing 2.2b1

ForrestBot lives!

June 2006

• holidays?

• Andreas, Peter and Jason as committer

July 2006

• Ard Schrijvers as committer

• New processor interface

• Release 2.2m1

• Continuations consuming RAM

• Maven

August 2006

• Java 5 minimum JDK requirement

• Cocoon 2.2 and Java 5

• Release 2.2m1

• ForrestBot build failed

• Who is this Java 5 anyway?

September 2006

• Roadmap for 2.2

• GT2006

• Maven wanted dead or alive

western sound clip?

The End
(really, this time)

